Cookware must be compatible with induction heating; in most models, only ferrous metal can be heated. Cookware will have a flat bottom since the magnetic field drops rapidly with distance from the surface. (Special and costly wok-shaped tops are available for use with round-bottom woks.) Induction disks are metal plates that are heated by induction and heat non-ferrous pots by thermal contact, but these are much less efficient than ferrous cooking vessels.
Induction compatible cookware for an induction cooking surface can nearly always be used on other stoves. Some cookware or packaging is marked with symbols to indicate compatibility with induction, gas, or electric heat. Induction cooking surfaces work well with any pans with a high ferrous metal content at the base. Cast iron pans and any black metal or iron pans will work on an induction cooking surface. Stainless steel pans will work on an induction cooking surface if the base of the pan is a magnetic grade of stainless steel. If a magnet sticks well to the sole of the pan, it will work on an induction cooking surface. An "all-metal" cooker will work with non-ferrous cookware, but available models are limited.
Aluminum or copper alone does not work on an induction stove because of the materials’ magnetic and electrical properties.[12]Aluminum and copper cookware are more conductive than steel, but the skin depth in these materials is larger since they are non-magnetic. The current flows in a thicker layer in the metal, encounters less resistance and so produces less heat. The Induction cooker will not work efficiently with such pots. However, aluminum and copper are desirable in cookware, since they conduct heat better. Because of this 'tri-ply' pans often have an induction-compatible skin of stainless steel containing a layer of thermally conductive aluminum.
For frying, a pan with a base that is a good heat conductor is needed to spread the heat quickly and evenly. The sole of the pan will be either a steel plate pressed into the aluminum, or a layer of stainless steel over the aluminum. The high thermal conductivity of aluminum pans makes the temperature more uniform across the pan. Stainless frying pans with an aluminum base will not have the same temperature at their sides as an aluminum sided pan will have. Cast iron frying pans work well with induction cooking surfaces but the material is not as good a thermal conductor as aluminum.
When boiling water, the circulating water spreads the heat and prevents hot spots. For products such as sauces, it is important that at least the base of the pan incorporates a good heat conducting material to spread the heat evenly. For delicate products such as thick sauces, a pan with aluminum throughout is better, since the heat flows up the sides through the aluminum, allowing the cook to heat the sauce rapidly but evenly.
The heat that can be produced in a pot is a function of the surface resistance. A higher surface resistance produces more heat for similar currents. This is a “figure of merit” that can be used to rank the suitability of a material for induction heating. The surface resistance in a thick metal conductor is proportional to the resistivity divided by the skin depth. Where the thickness is less than the skin depth, the actual thickness can be used to calculate surface resistance.[12] Some common materials are listed in this table.
Contact:Russel
Phone: +8618702737647
Email:info@bysmarttech.com
Add:R322, Building A, Avatar Creative park, No.8, Xinhe Str, Shajing Ave, Bao'An District, Shenzhen, China